博客
关于我
强烈建议你试试无所不能的chatGPT,快点击我
POJ 3259:Wormholes bellman_ford判定负环
阅读量:6843 次
发布时间:2019-06-26

本文共 3232 字,大约阅读时间需要 10 分钟。

Wormholes
Time Limit: 2000MS   Memory Limit: 65536K
Total Submissions: 37906   Accepted: 13954

Description

While exploring his many farms, Farmer John has discovered a number of amazing wormholes. A wormhole is very peculiar because it is a one-way path that delivers you to its destination at a time that is BEFORE you entered the wormhole! Each of FJ's farms comprises N (1 ≤ N ≤ 500) fields conveniently numbered 1..NM (1 ≤ M ≤ 2500) paths, and W (1 ≤ W ≤ 200) wormholes.

As FJ is an avid time-traveling fan, he wants to do the following: start at some field, travel through some paths and wormholes, and return to the starting field a time before his initial departure. Perhaps he will be able to meet himself :) .

To help FJ find out whether this is possible or not, he will supply you with complete maps to F (1 ≤ F ≤ 5) of his farms. No paths will take longer than 10,000 seconds to travel and no wormhole can bring FJ back in time by more than 10,000 seconds.

Input

Line 1: A single integer, 
F
F farm descriptions follow. 
Line 1 of each farm: Three space-separated integers respectively: 
N
M, and 
W 
Lines 2..
M+1 of each farm: Three space-separated numbers (
S
E
T) that describe, respectively: a bidirectional path between 
S and 
E that requires 
T seconds to traverse. Two fields might be connected by more than one path. 
Lines 
M+2..
M+
W+1 of each farm: Three space-separated numbers (
S
E
T) that describe, respectively: A one way path from 
S to 
E that also moves the traveler back 
T seconds.

Output

Lines 1..
F: For each farm, output "YES" if FJ can achieve his goal, otherwise output "NO" (do not include the quotes).

Sample Input

23 3 11 2 21 3 42 3 13 1 33 2 11 2 32 3 43 1 8

Sample Output

NOYES

Hint

For farm 1, FJ cannot travel back in time. 
For farm 2, FJ could travel back in time by the cycle 1->2->3->1, arriving back at his starting location 1 second before he leaves. He could start from anywhere on the cycle to accomplish this.

正常的path是双向的,有一定的消耗时间。虫洞是单向的,能够让时间倒流一定时间。问FJ能否找到一条路径,能够遇见之前的那个自己。

说白了就是找负环。

Bellman_ford模板题,用来对每一条边都进行松弛,然后看最后结果是否依然能够松弛。如果还能松弛,说明有负环;如果不能松弛了,就是没有负环。

代码:

#include 
#include
#include
#include
#include
#include
#pragma warning(disable:4996)using namespace std;struct E{ int s; int e; int l;}edge[5205];int N,M,W,edge_num;int dis[505];void addedge(int start,int end,int len){ edge_num++; edge[edge_num].s=start; edge[edge_num].e=end; edge[edge_num].l=len;}bool bellman_ford(){ int i,j; for(i=1;i<=N-1;i++) { int flag=0; for(j=1;j<=edge_num;j++) { if(dis[edge[j].e]>dis[edge[j].s]+edge[j].l) { flag=1; dis[edge[j].e]=dis[edge[j].s]+edge[j].l; } } if(flag==0) break; } for(j=1;j<=edge_num;j++) { if(dis[edge[j].e]>dis[edge[j].s]+edge[j].l) { return true; } } return false;}int main(){ int i,start,end,len; int Test; cin>>Test; while(Test--) { edge_num=0; memset(dis,0,sizeof(dis)); cin>>N>>M>>W; for(i=1;i<=M;i++) { cin>>start>>end>>len; addedge(start,end,len); addedge(end,start,len); } for(i=1;i<=W;i++) { cin>>start>>end>>len; addedge(start,end,-len); } if(bellman_ford()) { cout<<"YES"<

版权声明:本文为博主原创文章,未经博主允许不得转载。

转载于:https://www.cnblogs.com/lightspeedsmallson/p/4928109.html

你可能感兴趣的文章